

LORADD UTC timing trials & developments

Arthur Helwig Gerard Offermans reelektronika

Christian Farrow

ILA – 35th Convention and Technical Symposium Groton, CT, Oct 24-25 2006

Loradd Firmware development

Firmware development

- Time-domain interference rejection
- AGC-correction
- Increased number of stations that can be tracked
- 30 Notch filters (per channel)
- Time-tagging capability enhancements
- Hi-speed data output interface

Firmware improvements

Firmware version 1

Firmware improvements

Firmware version 2

🗖 NOTCH 📃 🗖 🔀		
Timestamp: Version: Num Notches: Active Notches:		16610.63 1.0 30 16
Num	Frequency	Bandwidth
0	114.7	0.601
1	115.0	0.601
2	115.4	0.601
3	77.5	0.617
4	77.5	0.617
5	81.0	0.577
6	81.0	0.577
7	128.9	0.695
8	128.9	0.695
9	123.0	0.757
10	123.4	0.757
11	123.8	0.757
12	82.7	0.718
13	74.9	0.732
14	122.5	0.508
15	108.9	0.394

Loradd UTC receiver development

Loradd UTC series

- All functionalities of a normal LORADD receiver
- Ovenized crystal for improved stability and hold-over (SRS SC10)
- 10 MHz, 2.048 MHz and 1.544 MHz outputs
- 1 PPS (Loran-C derived) output
- 1 PPS (GPS derived) output
- Loran-C Timing Source Station selectable

Loradd UTC Timing Tests in cooperation with

The World of Synchronisation

- Telecom networks need timing traceable to an atomic standard
 - Synchronisation Sync
- Timing needs to be transported around the network
 - Traffic needs timing whether it be bits or certain types of packet
 - Some applications need timing
- Timing used to be within the traffic
 - Plesiochronous Digital Hierarchy PDH
- Modern faster methods compromised the transport layer and pushed timing transport to the overhead
 - Synchronous Digital Hierarchy SDH
- Packet methods compromise sync transport further to the near impossible
 - Asynchronous Transport Mode ATM
 - Next Generation Networks NGN
 - Ethernet

• GNSS (GPS) offers a simple way to bring sync into the network to anyplace anytime

Buzz Words & Standards

- PRC Primary Reference Clock
 - Delivers 1 x 10⁻¹¹ sync (Cs)
 - ITU G.811
 - ETSI EN 300 462- 6 1
- PRS Primary Reference Source
 - Provides 1 x 10⁻¹¹ sync from GPS/Cs
- SSU Sync Supply Unit
 - Recovers, filters & distributes sync
 - Flywheels sync on failure of input feed

MTIE / TDEV

Relevant measurements:

- MTIE
 - Maximum Time Interval Error (MTIE): The maximum peak-to-peak delay variation of a given timing signal with respect to an ideal timing signal within an observation time ($\tau = n\tau_0$) for all observation times of that length within the measurement period (T).
- TDEV
 - Time Deviation (TDEV or $\sigma_x(\tau)$): A measure of the expected time variation of a signal as a function of integration time. TDEV can also provide information about the spectral content of the phase (or time) noise of a signal. TDEV is in units of time.

ETSI – EN 300 462- 3 - 1

7.2.1 Network limits for wander at PRC outputs

The maximum wander that may be generated at the output of a PRC, expressed in MTIE shall not exceed the limits given in table 2.

ETSI EN 300 462-3-1 V1.1.1 (1998-05)

Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 3-1: The control of jitter and wander within synchronization networks

Table 2: Network limit for wander at PRC outputs expressed in MTIE

MTIE	Observation Interval
25 ns	0,1 < τ ≤ 83 s
0,3 τ ns	83 < τ≤ 1 000 s
300 ns	1 000 < τ ≤ 30 000 s
0,01 τ ns	$\tau > 30\ 000\ s$

The resultant overall specification is illustrated in figure 3.

Figure 3: Network limit for wander at PRC outputs expressed in MTIE

Test setup

Test setup

Test setup

- Loradd UTC has been measured against Symmetricom TimeSource[™] 3100
- "TimeSource[™] 3100 is a stand alone office Primary Reference Source (PRS) with integrated GPS receiver which meets ITU-T G.811 network performance requirements. The TimeSource 3100 provides undisturbed frequency and time Stratum 1 synchronization when locked to GPS. Upon loss of GPS, continued Stratum 1 performance can be maintained for up to 72 hours with optional inputs."

Datasheet at www.symmetricom.com

Test results - Phase deviation

Symmetricom TimeMonitor Analyzer

Phase deviation in units of time; Fs=50.00 mHz; Fo=1.0000000 Hz; *28/06/06 06:03:23 PM*; *29/06/06 09:19:42 AM*; Fluke PM6680B; Test: 612; LORADD; 1PPS; TS3100; Samples: 2748; Gate: 1 s; Ref ch1; TI/Time Data Only; TI 1->2;

Symmetricom TimeMonitor Analyzer

MTIE on zoomed area; 2.329 hours to 15.24 hours; Fo=1.000 Hz; Fs=50.00 mHz; *28/06/06 06:03:23 PM*; *29/06/06 09:19:42 AM*; Fluke PM6680B; Test: 612; LORADD; 1PPS; TS3100; Samples: 2748; Gate: 1 s; Glitch: 40.00 nsec; Ref ch1; TI/Time Data Only; TI 1->2;

Symmetricom TimeMonitor Analyzer

TDEV on zoomed area; 2.273 hours to 15.24 hours; Fo=1.000 Hz; Fs=50.00 mHz; *28/06/06 06:03:23 PM*; *29/06/06 09:19:42 AM*; Fluke PM6680B; Test: 612; LORADD; 1PPS; TS3100; Samples: 2748; Gate: 1 s; Glitch: 40.00 nsec; Ref ch1; TI/Time Data Only; TI 1->2;

Conclusions

- Loran/Loradd meets most stringent requirements as set by ETSI/ITU
 - Can be used as input to SSU
 - Can be included in a PRC due to its dissimilarity to GPS
 - Can be used as low-cost timing source where ever GPS is currently employed in network
 - Antenna may be mounted indoors even 'buried' indoors!
- Cost issues
 - With GPS units available for well below \$ 100, Loran units will need to come down significantly for mass application
 - Complexity and components can be reduced
 - Mass production reduces cost
 - Antenna design can be simplified
 - Investment needed
 - Market analysis

One more thing...

Firmware 2 now available to all Loradd owners

Cost: \$ 0.00

Download via <u>www.reelektronika.nl</u> Receive authentication code via e-mail

Backup slides

- INGGA
- INRMC
- New Applications: TomTom, Navigon

Results in lift - MTIE

LORADD UTC 10MHz output (Antenna in lift, ground floor, door closed)

Symmetricom TimeMonitor Analyzer MTIE; Fo=10.00 MHz; Fs=500.0 mHz; *2006/06/29 19:30:47*; HP 53132A; Test: 634; LORADD; 10 MHz; TS3100; Samples: 25182; Gate: 1 s; Ref ch1; TI/Time Data Only; TI 1->2;

Results in lift - TDEV

LORADD UTC 10MHz output (Antenna in lift, ground floor, door closed)

Symmetricom TimeMonitor Analyzer TDEV; No. Avg=1; Fo=10.00 MHz; Fs=500.0 mHz; *2006/06/29 19:30:47*; HP 53132A; Test: 634; LORADD; 10 MHz; TS3100; Samples: 25182; Gate: 1 s; Ref ch1; TI/Time Data Only; TI 1->2;

